Tissue layer specific regulation of leaf length and width in Arabidopsis as revealed by the cell autonomous action of ANGUSTIFOLIA.
نویسندگان
چکیده
In vascular plants the shoot apical meristem consists of three tissue layers, L1, L2 and the L3, that are kept separate during organ formation and give rise to the epidermis (L1) and the subepidermal tissues (L2, L3). For proper organ development these different tissue layers must interact with each other, though their relative contributions are a matter of debate. Here we use ANGUSTIFOLIA (AN), which controls cell polarity and leaf shape, to study its morphogenetic function in the epidermis and the subepidermis of Arabidopsis thaliana. We show that ANGUSTIFOLIA expression in the subepidermis cannot rescue epidermal cell polarity defects, indicating a cell-autonomous molecular function. We demonstrate that leaf width is only rescued by subepidermal AN expression, whereas leaf length is also rescued by epidermal expression. Strikingly, subepidermal rescue of leaf width is accompanied by increased cell number in the epidermis, indicating that AN can trigger cell divisions in a non-autonomous manner.
منابع مشابه
Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh.
For genetic analysis of mechanisms of leaf morphogenesis, we chose Arabidopsis thaliana (L.) Heynh. as a model for leaf development in dicotyledonous plants. Leaves of the angustifolia mutant were the same length as but narrower and thicker than wild-type leaves. The total number of cells in leaf blades of angustifolia plants was the same as in the wild type. At the cellular level in the angust...
متن کاملThe leaf index: heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion.
The morphology of the leaves of angiosperms exhibits remarkable diversity. One of the factors showing the greatest variability is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation o...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملGenetic analysis of agronomic and physiological traits of bread wheat (Triticum aestivum L.) using generation mean analysis under drought stress conditions and spring planting in the cold climate
Study of heritability and gene action to improve agronomic and physiological traits, especially under drought stress conditions, are very important. The objectives of this study were to investigate heritability for important agronomic traits and some physiological characters in a cross between two spring wheat cultivars. The experiment was carried out using different generations (BC1, BC2, F3, ...
متن کاملEstimation of Leaf Area in Coneflower (Echinacea purpurea L.) Using Independent Variables
Leaf area information is required in various horticultural and physiological studies and it will be more useful if done via non-destructive methods. The objective of this study was to establish equations to estimate leaf area (LA) using length (L), width (W), fresh weight (FW), dry weight (DW), length × length (L2), width × width (W2), length × width (L×W), length + width (L+W), fresh weight × ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 61 2 شماره
صفحات -
تاریخ انتشار 2010